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An evolution equation is derived that describes the nonlinear development of the 
interface between two viscoelastic fluids flowing, under the action of imposed pressure 
gradient and gravity, in a vertical channel. The channel walls are kept at different 
temperatures, resulting in heat transfer across the layers. The equation, based on the 
lubrication approximation, models the effects of stratifications in density, viscosity, 
elasticity, shear thinning, and thermal conductivity. It also describes the capillary 
and thermocapillary effects, as well as the sensitivity of viscosities to temperature. 
Linear-stability analysis is performed based on the evolution equation to understand 
the competing effects of viscous, elastic, and Marangoni instabilities. Particular 
attention is paid to the active control of the interfacial instabilities through the 
thermocapillarity. 

1. Introduction 
The flow of multilayer non-Newtonian fluids occurs in many modern engineering 

processes, including the coextrusion of polymer melts. One of the important issues in 
this multiphase flow is the stability of the interface between different fluids. An initially 
flat undisturbed interface can become corrugated as the fluids flow downstream. For 
viscoelastic fluids, the main mechanisms for this interfacial instability are due to the 
velocity-gradient and normal-stress-difference mismatch at the interface, caused by 
the viscosity stratification and fluid elasticity, respectively. Since the interface shape 
can greatly influence the mechanical and optical properties of the product, an efficient 
control of the instability is required. 

In most applications, it may be necessary to maintain the interface free of any 
type of corrugations, while, in other cases, it may be desirable to obtain a wavy 
interface with a particular wavenumber or amplitude. An efficient stability control 
requires precise knowledge of the linear stability of the system and the nonlinear 
flow developments of the unstable interfaces. In this study, we examine the effect of 
thermocapillarity on the viscous and elastic instabilities as a method of active stability 
control. Imposing a temperature difference between channel walls is relatively easy to 
implement in practice. The study of competing instabilities is also of great academic 
interest. 

The instability due to the viscosity stratification in plane Poiseuille flows has been 
studied by Yih (1967), who performed a linear-stability analysis for two stratified 
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Newtonian fluids. He applied long-wave asymptotics to the Orr-Sommerfeld-type 
disturbance equation, and showed a purely viscous (no density stratification or thick- 
ness difference) long-wave instability. Hooper & Grimshaw (1985) studied nonlinear 
interface developments by deriving the Kuramoto-Sivashinsky equation and perform- 
ing a weakly nonlinear analysis. They showed that a finite-ampitude steady state can 
be reached through nonlinear saturation. Yiantsios & Higgins (1988) later general- 
ized Yih’s analysis to account for the differences in density and layer thickness. They 
solved the full linear disturbance equation numerically, so that the analysis is also 
extended to arbitrary wavenumbers. In addition to the interfacial mode, reported by 
Yih, a new shear-mode instability is found. The shear mode corresponds to short- 
wave disturbances of Tollmien-Schlichting type, and occurs only when the Reynolds 
number is sufficiently large. Charru & Fabre (1994) studied the long waves at the 
interface in plane Couette-Poiseuille flow by deriving an interface evolution equation. 
Tilley, Davis & Bankoff ( 19944 more recently reported a weakly-nonlinear analysis 
of the interfacial mode. They derived a strongly nonlinear evolution equation for the 
interface deformation by applying a long-wave approximation to the original fully 
coupled system. They then considered small-amplitude disturbances to obtain weakly 
nonlinear evolution equations of the Kuramoto-Sivashinsky type. Their nonlinear 
flow behaviours include the disappearance of the symmetry-breaking bifurcations due 
to the cubic nonlinearity introduced and a hysteresis loop that reveals the transition 
between smaller- and larger-amplitude travelling waves, which can be related to the 
phenomena of flooding. 

The instability due to the fluid elasticity in stratified flows has been studied by 
numerous investigators, as reviewed in the works by Su & Khomami (1992~) and 
Larson (1992). Li (1969) extended Yih’s (1967) Newtonian analysis to include the effect 
of the thickness and elasticity ratios. He showed that the purely viscous instability 
(interfacial mode) occurs when the less-viscous layer occupies sufficiently more space 
than the more-viscous one. However, he, and a few others later, incorrectly reported 
that the elastic instability occurs only in conjunction with the viscous instability. The 
correct elastic instability has been analysed more recently by Renardy (1988), Chen 
(1991), Su & Khomami (1992a,b). Their linear-stability analyses show that, even 
in the absence of the viscosity stratification, a pure elastic instability can occur, if 
the less-elastic layer has larger thickness. A weakly nonlinear analysis was recently 
performed by Renardy & Renardy (1993) to investigate the sideband instabilities 
following the onset of travelling interfacial waves in a stratified Couette-Poiseuille 
flow. They suggest that, owing to the sideband instability, the flow may be eventually 
dominated by the long-wave interfacial mode. 

The analysis of non-isothermal stratified flows has been attempted by a number 
of investigators, as cited in the works of Sornberger, Vergnes & Agassant (1986) and 
Nordberg & Winter (1990). However, the interfacial instability in such systems is still 
poorly understood. The temperature control of coextruded polymer fluids is often 
used in practice, in order to match the viscosity at the interface and consequently 
suppress the instability. As noted by Nordberg & Winter (1990), this common practice 
of matching the zero-shear-rate viscosity is too simplistic to be effective. One must 
understand the interaction of the heat-transfer effects with the existing viscous and 
elastic instabilities. 

In the present study, we examine the effect of thermocapillarity, and investigate the 
active stability control of stratified flows through the wall-temperature adjustment. 
We extend the work of Tilley et al. (1994~) to derive a strongly nonlinear evolution 
equation that models the effects of stratification in density, viscosity, elasticity, shear 
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Fluid 2 

FIGURE 1. Two-layer flow configuration. 

thinning, thermal thinning, and thermal conductivity. Three distinct instability mech- 
anisms are built in, which include the thermocapillary instability of the interfacial 
mode. The other mode of thermocapillary instability, with much shorter charac- 
teristic wavelength, occurs in layers much thicker than those considered here, and 
does not generate significant interfacial deformations (see Goussis & Kelly 1990 for 
a discussion of the two different modes of thermocapillary instability). The evolution 
equation provides an efficient alternative to the linear stability analysis of the full 
non-isothermal system, and enables us to study the weakly and fully nonlinear flow 
developments of the interface disturbance. For a precise control of a flat or corrugated 
interface, both the linear and the nonlinear flow behaviours need to be understood. 
We report the derivation of the evolution equation and the linear stability analysis 
here. The nonlinear evolution will be presented in a separate report. 

2. Formulation 
Two immiscible viscoelastic fluids are flowing in a vertical parallel-plate channel as 

shown in figure 1. The flow is induced by the combined effect of gravity and pressure 
gradient, so that the direction of the mean flow can be either vertically upward or 
downward in each phase. Each fluid has constant density pi, thermal conductivity ki 
and elastic time constants, where the index i = 1 (i = 2) represents fluid 1 (fluid 2), 
but the viscosity varies with local shear rate and temperature, as described below. The 
channel walls in contact with fluid 1 and 2 are maintained at constant temperatures 
TI and T2, respectively. 

We use a Cartesian coordinate system (x,y), measured in units of the channel gap 
d,  where x is directed vertically downward and y is directed normal to plate 1 into 
the fluids. The non-dimensional time t, velocity (di), di)),  and stress components are 
based on the viscous scales of fluid 1, d 2 / v l ,  vl/d, and plv: /d2,  respectively, where 
v 1  = ~ 1 / p 1  and b 1  is the zero-shear-rate viscosity of fluid 1 at temperature T I .  The 
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momentum equations for each phase are then written as 

where the subscripts x, y, and t represent partial differentiation. The components of 
the extra-stress tensor 2" are denoted by superscripts for convenience. The parameter 

G = -  d3g 
v: 

is a measure of the gravity g .  A parameter for the density ratio 
P2 

P = -  
P1 

appears in the momentum equations for fluid 2. The continuity equation for each 
phase is 

(3) ut) + = 0. 
Y 

For both fluids we modify the Oldroyd four-constant model to include the tem- 
perature dependency of the viscosity. The Oldroyd four-constant model describes 
viscoelasticity with shear thinning in dynamic viscosity and in first normal-stress 
coefficient but zero second normal-stress coefficient (see, e.g., Bird, Armstrong & Has- 
sager (1987) for a detailed review of the model). We assume that the zero-shear-rate 
viscosity poi varies linearly with temperature : 

(4) 

where ? is the dimensional temperature. For most common fluids the constants Pi are 
positive (thermal thinning). If we scale the temperature using T = ( F  - T I ) / (  T2 - TI ) ,  
the model becomes 

( 5 )  

poi = poi [I - Pi ( F  - TI)] 

~ l ( ~ )  + ~ e & )  +Z( i )  (tr$)) 7 = (I - B ( ' ) T )  (7 + ~ e z ~ f . ) ,  

where 7 = Vu + ( V U ) ~  is the rate-of-strain tensor, 

DO ()* = - - [() - v v  + (() * V#] , 
Dt 

superscript T denotes transpose, D/Dt is the material derivative, and V = (dx,  3,) is 
the gradient operator. The parameters 

are dimensionless relaxation and retardation time for each fluid, respectively, and 
become zero for inelastic fluids. For convenience we define the Deborah number in 
each phase as 

De@) = Deli - ~ e z ~ ,  

which is always positive owing to the constraint of the model constants. The non- 
dimensional time constant 

and the parameter 
B(') = pi (T2 - TI) 
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measure, respectively, the shear and the thermal thinning. For example, in a steady 
simple shear flow, the fluid viscosity would behave as 

The energy equations become, after non-dimensionalization, 

The Prandtl numbers 

where I C ~  is the thermal diffusivity for each fluid. The kinematic-viscosity ratio 
V2 

V1 
v = -  

appears in the energy equation for fluid 2. 
The interface between the fluids is located at y = h(x,t), where 0 < h < 1 due to 

the scaling. The mean location of the interface ho = d l / ( d l  + d2) is imposed as a 
control parameter, where dj is the mean layer thickness in each phase, but the local 
shape h(x ,  t )  must be obtained as a part of the solution to the above system. The 
interfacial tension CT varies linearly with temperature : 

CT=CTo[l-y(T-T1)], (9) 

where 00 is the interfacial tension at T = TI .  There is a jump in the normal stress at 
the interface due to the capillary force: 

3 -  
N 3  

- p(2) + p(') + [[n ~ " ( ~ 1  n]] = - - ~ h ,  at y = h, 

where 

(11) 
1 

N 
R = - (-hx, 1) 

- 6od S = -  
3 P i V :  

is the unit normal vector at the interface directed into fluid 2, 

is the non-dimensional mean interfacial tension, and N = (1 + h:)1/2. The jump 
in quantities across the interface is denoted by [-] = (-)(I) - (D)(~). Owing to the 
thermocapillarity, there is a jump in the shear stress, which is described as 

[[t #) nu = M t  VT at y = h, (12) 

where 
1 
N t = - (1,hJ 

is the unit tangent vector at the interface. The Marangoni number, defined as 

Y 0 0 4  T2 - Tl) 

Ply: 
M =  9 

measures the thermocapillarity, and can assume a positive or negative value depending 
on the controlled temperatures TI and T2. There is no slip at the interface, so that 
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the normal and tangential components of the velocity vector are continuous across 
the interface : 

[u-n] = 0 at y = h, 
[ u - t ]  = 0 at y = h. 

The local temperature and heat flux are also continuous across the interface, which 
gives 

~ ( 1 )  = ~ ( 2 )  at y = h (16) 

where the ki are the thermal conductivities at each layer. The location of the interface 
is defined by the kinematic condition u = h, + uh, at y = h, which is converted into 

by assuming the normal-velocity condition ( 14) and introducing a non-dimensional 
flow rate 

1 Q = A  udy, 

which is in units of vld. Here Q is positive (negative) for a vertically downward 
(upward) flow, and its magnitude can be considered as the Reynolds number. In the 
single-layer limit (p2, p2 + 0), it is impossible to impose the pressure gradient. The 
flow rate is controlled by changing the mean layer thickness, and the parameter G 
thus becomes the Reynolds number. 

Both walls are rigid and kept at constant temperatures. The boundary conditions 
are thus 

at y = 0, (19) 
u(2) = v(2) = 0 and T(2)  = 1 at y = 1. (20) 

u( l )  = = T(') = 0 

3. Evolution equation 
When both layers are thin and the fluids have moderate elasticity (Q, G, De(') 

= 0(1)), the instability occurs in the form of interfacial waves. The shear instability, 
which is essentially a short-wavelength disturbance of the Tollmien-Schlichting type, 
and the thermocapillary instability of the Pearson type (Pearson 1958), which also 
occurs for disturbance wavelength comparable to the layer thickness, do not exist. 
The interfacial modes start to grow for long-wave disturbances, while short waves are 
suppressed by the capillary force. The dynamics of the flow thus can be efficiently 
studied by applying the long-wave asymptotics. The interface deformation can 
have a profound effect on the quality of the processed materials, and needs to be 
thoroughly examined. While the linear stability of the interface can be studied by the 
usual infinitesimal-amplitude normal-mode analysis, as performed by Yih (1967) and 
Yiantsios & Higgins (1988) for isothermal Newtonian fluids and by Li (1969) and 
Su & Khomami (19924 for isothermal viscoelastic fluids among others, we derive 
an evolution equation, which enables the stability analysis and the study of highly 
nonlinear flow behaviours beyond the initial disturbance growth. An equivalent 



Interfacial instabilities in flow of two viscoelastic fluids 247 

equation for isothermal Newtonian fluids has been reported by Tilley et al. (19944, 
and the following is a rather tedious but straightforward extension of their derivation. 

We apply the long-wave approximation by rescaling the streamwise and temporal 
variables to 

where the small parameter e is the ratio of the channel gap d to a typical disturbance 
wavelength. The interfacial-tension parameter is usually very large, but the shear 
and thermal thinning parameters, z(') and @'), are small. We thus rescale these to 

5 = E X  and z =et7 (21) 

(22) ( S , p ) ,  BW) = ( € - 2 ~ ,  t.z(i), eB(i)) 

while the other parameters are kept O( 1). The above scaling makes the leading-order 
solutions (basic state) purely Newtonian, and ensures that the stabilizing capillary 
force competes with the other destabilizing effects, appearing in the second order. 

The dependent variables for each phase, including the stress components, are 
expanded for small e: 

(23) 

(24) 

,(i) = u$) + eui') + . . . 
, ( i )  = e + (=,(,') + . . . ( 

(28) 

(29) 

The local layer thickness is taken to be of order unity. If we substitute these into the 
constitutive equation ( 5 ) ,  we obtain the stress components as 

(30) 

p ( i )  = ,vvCi) + e , ~ ~ ( i )  1 +-), 
( 0  

T(') = T$) + 'q) + . . . . 

,xx(i) = 2 B D  (i) ~2 

clol 
e uoy +W), 

where 

The viscosity ratio 
(33) @) = ug! + u(i)u(i)  + v( i )u( i )  

0 oy 0 oy' 

p=-=ppv Po2 

PO1 

appears for fluid 2. 
In the leading order, we solve the y-momentum equations 

= 0 

with 
P P  = Po (2) at y = h, 

(34) 

(35) 
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the x-momentum equations 

with 
u(') = 0 at y = O ,  (37) 

the continuity equations 

with 

(0 - - (0 
uoy - uo5 

dl) 0 = o at y = 0, 

= o at y = 1, 
and the energy equations 

with 
T$y = 0 

Ti') = 0 at y = 0, 

T:' = 1 at y = 1, (47) 

To ('1 = To (2) at y = h, (48) 

T,:) = kT$) at y = h, (49) 

where k (= k 2 / k l )  is a parameter measuring the thermal-conductivity ratio. As 
explained by Tilley et al. (1994a), five conditions are required for (36) because the 
leading-order pressure gradient p$ (=& has to be obtained simultaneously. 

The solutions to the above system are 

(54) 

where the coefficients ay'(h; p,  p, G, Q) are defined in the Appendix. 
The second-order solutions are obtained in an identical sequence to that of the 

leading order, but we need to find only p?! and u? to obtain an evolution equation 
accurate to O(E).  Since all parameters introduced in the previous section are coupled 
in, the governing equations and solutions are very complicated. We have developed a 
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program in Macsyma that generates the complete solutions. The source code will be 
available to interested readers upon request. Here, we simply note that the capillary 
effect is introduced through the normal-stress interfacial condition 

P ~5 at y = h ( 5 5 )  p(2)  - ( I )  = 3Sh 

and the balance in viscous, elastic, thermal-thinning, and thermocapillary stresses is 
included in the shear-stress interfacial condition 

Finally, the evolution equation can be obtained by substituting the solutions into 
the condition (18) (or the kinematic condition at the interface): 

h7 + Joht + 6 (Jibs + Jh t , ,  + J 3 ) t  = 0, (57) 

where the coefficients 

Jo = Jo ( h ;  G7 Q7 P ,  p) 7 

Ji = Ji ( h ;  G, Q,  P, p, k,  De(", M )  , 
52 = 5 2 ( h ; p , S ) ,  
J~ = J~ ( ~ ; G , Q , ~ , H ~ , Z ( ' ) , B ( ' ) )  

are explained further in the following sections. The evolution equation for isothermal 
fluids is obtained by taking M = B(') = 0 in (57). If we further set De(') = Z(i )  = 0, 
the evolution equation for two Newtonian fluids, derived by Tilley et al. (1994a), is 
recovered except for the hydrostatic effect, which is absent in the present case of a 
vertical channel. The single-fluid limit is achieved by setting p = p = 0. If we take 
this limit with M = l?@) = 0 on (57), the evolution equation for a vertical draining 
viscoelastic film, reported by Joo (1994), is obtained. If we then set De(') = Z(i) = 0, 
the evolution equation for a Newtonian draining film, first obtained by Benney (1966), 
is recovered. 

4. Interface-wave propagation 
The terms proportional to JO and 53 in (57) are considered as the convective terms, 

which govern the propagation of the disturbance downstream. Therefore, JO provides 
the nonlinear phase speed, while J3 gives a small correction due to the shear and 
thermal thinning. 

The leading-order phase speed JO is written as 

1 
Jo = +(h - 1)&, 

fo 
where 

is a positive-definite quantity and the factor Eo = E o ( h ; G , Q , p , p ) .  The local phase 
speed reduces to zero as the interface approaches either channel wall (h  + 0 or 1). 

When there is no viscosity stratification (p = l), the phase speed ( 5 8 )  becomes 

f o  ( h ;  p )  = h4p* - 2h(h - 1)(h* - h + 21p + ( h  - 114 (59) 

Jo = h(h - 1) [Gh(2h - l ) (h  - l)(p - 1) - 6Q] . (60) 

It is seen that the phase speed increases linearly with the flow rate. Equation 
(60) also indicates that the local propagation speed of the interface disturbance 
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FIGURE 2. Local phase speed when p = 1 and G = 5Q. 

decreases (increases) if the fluid with the higher density is locally thinner (thicker), 
i.e. (2h - l ) ( p  - 1) c 0. When p = 1, the phase speed reaches a maximum at the 
midpoint of the channel. When there is density difference between the fluids, the 
location is shifted toward the layer with higher density. This change in local phase 
speed is substantial when the density ratio p is very large. Figure 2 shows the phase 
speed Jo against the interface location h for different values of p when p = 1, G = 5, 
and Q = 1. The interface location for the maximum phase speed moves closer to 
the wall 2 in contact with the higher-density fluid. Near the wall in contact with the 
lower-density fluid, the phase speed is lower. For sufficiently large density difference 
( p  = 15), the minimum local phase speed can become negative, resulting in local 
wave propagation in the opposite direction to the flow. 

In the absence of the density stratification ( p  = l), we get 

(61) 
6P 
fo2  Jo = -h(h - 1) (h2p - h2 + 1) (h2p - 2hp - h2 + 2h - 1) Q. 

It is noteworthy that the local phase speed is now independent of G ;  it is proportional 
to the flow rate. At p = ( 1  - 1 / / 1 ) ~  there is a reversal in the direction of the local wave 
propagation. If p > (1 - 1/h)2, the wave propagates opposite to the flow direction. 

If we assume that fluid 2 is inviscid ( p  = 0 but p # 0), a non-uniform limit 

Jo = Gh2 (1 - p )  (62) 

is obtained. It states that the disturbance does not propagate unless there is a density 
stratification and its direction, regardless of the location of the interface, depends on 
the density ratio. Equation (62) does not allow the interchange (for this case, switch 
p with l /p  and h with 1 - h) of fluid layers without changing the flow dynamics. This 
exchange must be performed before taking the non-uniform limit. If we further set 
p = 0 and p = 0, the expression 

Jo = Gh2 (63) 
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for a single fluid is obtained. When fluid 2 is absent, fluid 1 drains down owing to 
the gravity only, and we no longer have the freedom to impose the flow rate Q since 
the leading-order pressure gradient that drives Q vanishes in this limit: it is given as 
Q = G / 3 .  The phase speed thus is proportional to G for a single fluid. 

If the fluid viscosities change with local stress (shear thinning) or temperature 
(thermal thinning), there is a small correction 

dJ3 

to the phase speed Jo. For Newtonian fluids J3 = 0, so that this phase shift is absent. 
The expression for 5 3  can be divided into four parts: 

where each part represents the contribution from shear and thermal thinning for each 
fluid layer and 

The terms for shear thinning are linearly proportional to the Deborah number, and 
show that there is no shear-thinning contribution for inelastic fluids. From (64) it 
is interesting to note that each effect for each layer is combined as a simple linear 
superposition. This allows us to examine each term separately without losing the 
coupling of other competing effectst. 

In the absence of density stratification, the shear-thinning effect is expressed by 

where EY; = EfL(h;p) .  It is very sensitive to the flow rate (proportional to Q3), and 
disappears on either surface of the channel. When p = 1, only elastic stratification 
exists. In this case, we have 

(68) 

(69) 

-=-  432 ( 128h5 - 320h4 + 310h3 - 150h2 + 40h - 5) , 

432 (128h' - 320h4 + 310h3 - 140h2 + 30h - 3) . 

E g  
fi 5 

Eg! 
fi 5 
- =-- 

These expressions have symmetry about h = 1/2 ( h  us. 1 - h), which correctly shows 
that the layers can be interchanged without affecting the phase speed if we also 
interchange De(') with D d 2 ) .  If we further set Dd') = Dd2)  and Z ( l )  = 2(2), we get 

(70) J3z = -864De(')Z(')Q'h(h 5 - 1) (5h2 - 5h + 1) , 

which has two maxima at h = 1/2 k fl, a minimum at h = 1/2, and two zero 
points at h = 1/2 & m. The shear thinning can either decrease or increase the 
phase speed. The shear-thinning effect for a single layer is seen by setting p = p = 0, 

t This is also true for the full evolution equation (57), where each term again can be expressed as 
a linear superposition of further specified effects. The nonlinear coupling between all these effects 
is achieved through the interfacial motion h({ ,  t). 
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which yields 

It is proportional to G3 rather than Q3 for the same reason as explained above. In 
contrast to stratified layers, the shear thinning always increases the phase speed. 

332 = 2 ~ e ( ' ) ~ ( ' ) ~ ~ h ~ .  (71) 

The thermal-thinning effects are described by 

for p = 1, where EfL = EYL(h;p,k). They are linearly proportional to the flow rate, 
and disappear on the channel surface. If there is no stratification in density, viscosity, 
and thermal conductivety ( p  = p = k = l), equation (72) is simplified to 

E(')  

fo3 
2 = h(h - 1)(6h3 - 5h2 + h), 

E(2) 

fo3 
3 = -h(h - 1)(6h3 - 5h2 + h + 1). 

(73) 

(74) 

These quantities are not symmetric about h = 1/2. Owing to the temperature gradient, 
interchanging the layers gives rise to different thermal-thinning effects. If we further 
set B(') = ~ ( ~ 1 ,  we get 

(75) 
When the interface is located closer to the channel wall with higher (lower) tem- 
perature, the phase speed increases (decreases) due to the thermal thinning. The 
single-layer limit ( p  = p = 0) for this case would represent stratified fluids, where 
fluid 2 is completely passive except for the conductive heat transfer from wall 2 to 
the interface. The thermal-thining effect 

J32 = -Bc')Qh2(h - 1)2. 

B(')Gkh3 
3(hk - h + 1) 532 = 

always increases the phase speed. 
The shear and thermal thinning do not affect the linear stability of the present flow 

system, as we shall see below. The nonlinear development of the unstable interface 
waves, however, will be greatly influenced by their effect on the local phase speed. 
For a single layer, the shear thinning is known to stabilize the interface motion and 
delay or suppress the chaotic flow development (Joo 1994). For stratified fluids, the 
shear- and thermal-thinning effects are not monotonic but a complicated function 
of the fluid properties and the interface location that varies with time. In order to 
study these effects further, we need to first identify the parametric regions where the 
interface wave may occur. 

5. Stability analysis 
The linear stability analysis of the stratified-flow system can be performed via the 

evolution equation. The basic state is a flat undisturbed interface, described by h = ho, 
where ho is a constant. The velocity and temperature fields for this basic state can 
be obtained by substituting h = ho into the leading-order solutions described above. 
In both phases, the velocity distribution is parabolic and the heat transfer is purely 
conductive. 
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We superpose a simple harmonic disturbance of an infinitesimal amplitude onto 
the basic state, and write 

h = ho + 6 (eicll+rz + C.C.) , (77)  

where a and r are the disturbance wavenumber and the complex growth rate, 
respectively, C.C. represents the complex conjugate, and 6 << 1.  The linear stability 
of the system is then determined by the sense of the real part Tr of the growth rate; 
the disturbance will grow in time if rr > 0. If we substitute (77) into the evolution 
equation and linearize in 6, we obtain 

(78) rr = €a2 ( J ~  - U ~ J ~ ) .  

It is obvious that J1 > 0 and J2 > 0 will, respectively, destabilize and stabilize the 
flow. 

The stabilizing term a2J2 has a factor a2, so that it ensures the onset of insta- 
bility to be at zero wavenumber and provides a cutoff wavenumber a, = (J1/,J2)1/2. 
The interfacial instabilities occur for disturbances with long wavelength because the 
capillary effect (J2) suppresses short waves. The full expression for 5 2  is given by 

(79) 
1 

52 = --h3 ( h  - 1)3 ( h p  - h + 1) S ,  

which is positive definite for 0 < h < 1 and p > 0; the capillary effect is always 
stabilizing. For convenience we will denote the basic state ho by h throughout the 
linear-stability analysis. As the viscosity ratio p increases from zero, J2 decays from 
the value for a single layer h3S to zero. Since the the wavenumber a~ (= (J1/(2J2))1/2 
that corresponds to the maximum linear growth rate would increase to infinity as 
J2 decays to zero, the long-wave asymptotics appears to break down for sufficiently 
large viscosity ratio p. However, as we shall see below, the destabilizing effects in 
J1 decay with the same rate as J2 as p increases to infinity, so that the evolution 
equation stays asymptotically valid for a large viscosity ratio. 

While 52 provides the wavenumber range for the instability, the other parametric 
regions for instability are obtained by studying J1. Again, J1 is given as a linear 
superposition of the effects of velocity-gradient jump at the interface (instability due 
to viscosity stratification), elastic normal stresses in both layers (elastic instability), 
and the surface-tension gradient (thermocapillary instability) : 

f o  

~1 = ~ 1 "  + De(')J$ + ~ e ( ~ ) ~ i 2 , )  + M J ~ ~ ,  (80) 

where 

5.1. Instability due to density stratijication 
As noted by Tilley et al. (1994a), the effect of density stratification is nonlinearly 
coupled in the evolution equation, and cannot be singled out as a linear superposition 
on other effects. If one wishes to examine the instability purely due to the density 
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FIGURE 3. Instability due to the density stratification ( p  > 1). S denotes a stable region. 

stratification, one can set p = 1 and De(’) = M = 0 in (80) to obtain 

J1 = G(p - l)h3(h - l)3E20 ( h ;  Q,  p )  . 
The instability is of gravitational origin, and disappears as G + 0. 

When the layer thicknesses are equal ( h  = 1/2), J1 is simplified to 

which indicates that the flow becomes unstable if 

The flow rate must exceed a critical value to overcome the gravity-induced fluid 
redistribution. Flows opposing gravity (Q < 0) are always unstable. 

If there is a thickness difference ( h  # 1/2), the effect of the density difference 
becomes more complicated. In figure 3, a stability diagram is shown for a density 
ratio p > 1, where the neutral stability curves are given by 

Q / G  = i ( p  - l )h2(h - 1)2 

x(444h5p - 11 10h4p + 1035h3p - 479h2p + 129hp - 19p - 444h5 + 1 1  10h4 
-1035h3 + 406h2 - 56h)/(384h6p - 1152h5p + 1295h4p - 703h3p + 211h2p 
-37hp + 2p - 384h6 + 1152h5 - 1295h4 + 637h3 - 112h’). (87) 

As h increases or decreases from 1/2, the flow rate required to keep the flow stable 
increases. Further deviation from h = 1/2 eventually makes all vertically downward 
flows unconditionally unstable. As the thickness difference grows even further, the 
vertically downward flows become stable again for sufficiently large flow rate, if the 
thinner layer has higher fluid density. Similar conclusions can be drawn from the 
diagram for the destabilization of vertically upward flows. Since there is a symmetry 
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FIGURE 4. Instability due to the viscosity stratification. (As in Yiantsios & Higgins 1988.) 
S denotes stable and U unstable. 

between p with h and l /p  with 1 - h, the stability diagram for p < 1 will be an exact 
mirror image of figure 3, and does not change the above stability criteria. 

The density-stratification effect is coupled in the viscous and elastic instabilities, 
but does not affect the thermocapillary instabilities. In what follows, we will focus on 
these other instabilities by setting p = 1, except when we take the single-layer limit 

5.2. Instability due to viscosity stratijication 
The linear-stability analysis for fluids with viscosity stratification has been reported 
extensively since the pioneering work by Yih (1967), and will not be repeated here. 
For completeness we will simply state some essential stability criteria, and expect the 
readers to refer to the more detailed studies by Yiansios & Higgins (1988) and, more 
recently, by Tilley et al. (1994b). 

The term J I V  in (80) describes the instability due to the velocity-gradient difference 
at the interface, and can be written as 

( p  = p = 0). 

Jlv = Q2h2 ( h  - 1)2 ( p  - 1) (h2p - h2 + 2h - 1) E3(h;p), (88) 

where the density ratio is set to unity. The factor E3 is positive definite for p > 0 and 
0 < h < 1, so that the flow becomes unstable if 

( p -  1) [.- (?)*I >o .  

Figure 4 illustrates this stability condition on a (p, h)-plane. It shows that the 
instability occurs if the thinner layer is sufficiently more viscous. In layers with equal 
thickness ( h  = 1/2), the interface is always unstable. 

If we take the single-layer limit p = p = 0 in (81), we recover the expression 

(90) 
2 

J1 = -G2h6 
15 

for the surface-wave instability. The flow becomes always unstable. The linear stability 
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and subsequent nonlinear flow developments for this case are explained in numerous 
works, including those by Yih (1963), Gjevik (1970), Lin & Wang (1985), Chang 
(1989), and Joo & Davis (1992a,b). 

5.3. Elastic instability 
When the fluid is viscoelastic, the extra normal stress, absent in purely viscous fluids, 
can cause the elastic instability. The two terms proportional to De(') and De(2) in (80) 
model this elastic effect originating from fluids 1 and 2, respectively. In the absence 
of the density stratification, these are expressed by 

J;; = Q2h2 (h - 1j2 (h2p - h2 + 2h - 1) @)(h;p). 

The effect of viscosity stratification is coupled in these elastic effects, so that the term 
Jlv in (80) must be considered simultaneously, if one wishes to study the cases with 
P f l .  

Purely elastic instability can be studied by setting p = 1, which yields 

J1 = De( ' ) J i i  + De(2)J12,) = 36 ( D d 2 )  - De('))  Q2h2(h - 1)2(2h - l)3. (92) 

The flow becomes unstable if the less (more) elastic fluid occupies more (less) than 
half of the channel, 

(93) 
a result reported by many others, including Su & Khomami (1992b) more recently. 
The elasticity thus can either stabilize or destabilize the interface, and its effect 
disappears when both layers are equally elastic or equal in thickness. It is interesting 
to note that the critical thickness h = 112 for stability/instability does not depend on 
the elasticity ratio, whereas in the viscous instability, described by (89), it varies with 
the viscosity ratio p. 

(De(2) - De(')) (2h - 1) > 0, 

If we set p = p = 0, we recover the expression 

J l E  = 3G2h4 (94) 

for a single viscoelastic layer. It shows that the elasticity is always destabilizing in a 
draining film. 

5.4. Elastic instability with viscosity stratification 
The instabilities in viscoelastic layers with viscosity stratification are described by 

= Q2h2 (h  - 1)2 (h2p - h2 + 2h - 1) [ (p - 1)Es + De(')Ef) + De(2)Ef ) ]  . (95) 

The growth rate has quadratic dependency on the flow rate, but the stability bound- 
aries are not affected by the flow rate in layers with viscous and elastic instability. 

When there is viscosity stratification (p # l), the interface becomes unstable owing 
to both the velocity-gradient mismatch and the elasticity, even in the absence of 
elasticity stratification (De(') = D d 2 )  = De). Figure 5 shows the effect of fluid 
elasticity on the viscous instability, and vice versa. The viscosity ratio is taken to be 
p = 2. Since the fluids have no other distinction than viscosity and layer thickness, 
the behaviour for p = 1/2 can be easily deduced by symmetry. In figure 5(a), J1/Q2 
is plotted against h for three different Deborah numbers, De = 0, 0.05, and 0.1. The 
horizontal axis can be considered as the neutral stability branch for all these Deborah 
numbers in the absence of viscosity stratification (p = 1). The curve for De = 0 
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FIGURE 5. Instability due to the viscosity stratification and elasticity (De(') = De(*) = 0.1). 

(a) Linear growth rate when p = 2; ( b )  stability diagram. 

represents purely viscous instability. Since fluid 2 has twice the viscosity of fluid 1, 
the interface stays stable if h < 4 - 1 and becomes unstable if h > - 1 (see 
(89)). When the fluids are viscoelastic (De # 0), each of these stable and unstable 
ranges is subdivided into another pair of stable and unstable ranges. When there is 
sufficient difference in layer thickness, the imbalance in the elastic normal stress will 
become large enough to change the stability boundary. If the more (less) viscous 
layer is thinner, it stabilizes (destabilizes) the flow. In fact, most dangerous modes 
(maximum growth rates) occur when h w 0.1, which lies in the stable range if the fluid 
were inelastic. In figure 5(b), the stability bounds are plotted in a (p,h)-plane when 
De = 0.1. The branch that passes (0.5,l) is identical to that for purely viscous fluids in 
figure 4. The entire region to the right (left) of this branch would be unstable (stable) 
if De = 0. As the fluid elasticity increases from zero, a pair of new branches appears 
near h = 0 and h = 1, and approach each other. As seen in figure 5(a), for p > 1 
these create an unstable region when the less-viscous layer is sufficiently thinner, and 
a stable region when it is sufficiently thicker. When p < 1, the opposite is true. 

When there is elasticity stratification (De(') # De(2)) as well, the elastic instability 
exists even in the absence of the viscosity stratification. Figure 6 shows the effect of 
the viscosity stratification on the elastic instability. In figure 6(a),  fluid 2 has higher 
elasticity (De(')  = 0.1 and De(*) = 0.2). According to (93), the interface will become 
unstable if layer 2 is thinner ( h  > 1/2). However, for sufficiently large viscosity 
difference, additional stable and unstable regions appear, as explained in figure 5. 
A critical value for ,H - 1 (for p > 1) is required because the elasticity stratification 
further destabilizes (stabilizes) the viscous instability (stability). In the unstable and 
stable regions at the upper left and right corners, the effect of elasticity has overcome 
the effects of the stratifications in elasticity and viscosity. The stability criteria for 
D d ' )  > De(2) can be deduced from figure 5(a) by considering the symmetry (h  with p 
and 1 - h with l/p). The resulting diagram is provided in figure 6(b)  for reference. 

5.5. Thermocupillary instability 
Even when these is no elasticity and stratification in density and viscosity, the flow 
can become unstable due to the thermocapillarity. The full expression for this 
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FIGURE 6. Instability due to the stratifications in viscosity and elasticity. (a) De(’) = 0.1 and 
Def2) = 0.2; (b)  De(’) = 0.2 and De(2) = 0.1. 

effect is 

(96) 
kh2(h - 1)2 (h2p - h2 + 2h - 1) 

2fo [h(k - 1) + 1J2 
J ~ T  = - 

If we want to extract the purely thermocapillary instability, the viscosity ratio p must 
be set to unity, which yields 

h2(h - 1)2(2h - 1)k 
J ~ T  = - 

2 [h(k - 1 )  + 112 ’ 
(97) 

The interface will become unstable owing to the pure thermocapillarity if 

M(2h - 1)  < 0 

(T2 - T M 2  - 4)  > 0. 

(98) 

(99) 

or equivalently 

It can be deduced that the instability occurs if the channel wall in contact with the 
thicker layer is heated. If both layers are equal in thickness (d l  = dz), then the 
thermocapillarity becomes ineffective. The thermocapillarity also disappears in the 
limits either k + 0 or k + co. 

5.6. Thermocapillary instability with viscosity stratification 
When the viscosity stratification is also present, (96) must be considered with (88) 
superimposed : 

J1 = h2(h - 1)2 (h2p - h2 + 2h - 1 )  Q 2 ( p  - 1)E3~ - M 1 .  (100) 
2fo [h(k - 1) + 112 

The neutral stability branch related to (89) persists, but the flow can be stabilized or 
further destabilized, depending upon the heating condition M .  The thermocapillarity 
is stabilizing if 

M [.- (32] <o, 
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or equivalently, 

Figure 7 shows the growth rate of the interface wave in layers with viscosity 
stratification and thermocapillarity. The viscosity ratio is set to p = 2, and several 
different values for M and k are chosen. The qualitative behaviour for p = 1/2 
can be deduced from the figures owing to the symmetry. In figure 7(a), we set 
k = 2 and vary M from zero to 0.3. Since k > 1, the thermocapillarity by itself 
( p  = 1) would stabilize the flow if h > 1/2 and destabilize if h < 1/2. The curve for 
M = 0 represents the purely viscous instability. The growth rate becomes positive 
if h > 4 - 1, consistent with (89). The curve for M = 0.1Q2 shows an unstable 
range of small h created by the thermocapillarity. The growth rate for h > 4 - 1, 
on the other hand, has decreased. With a larger heating ( M  = 0.2Q2), this effect is 
more conspicuous, and a stable range is created for large h. This trend continues 
for even larger heating, so that the new unstable region near h = 0 and the new 
stable region h = 1 expand toward each other until they collapse, resulting in 
complete reversal of stable and unstable ranges ( M  = 0.3Q2). Figure 7(b)  shows the 
growth rates for k = 1/2. In this case, the thermocapillarity destabilizes the flow 
for sufficiently large h. The two instabilities reinforce each other, and no change 
of stability criteria occurs. In figure 7(c) ,  the same conditions as in figure 7(a) 
are taken except that a higher viscosity ratio ( p  = 4) is chosen. As the viscosity 
stratification increases, the thermocapillary destabilization near h = 0 becomes less 
effective. A small stable range of h near h = 0 survives the thermocapillarity if M 
is not sufficiently large ( M  = 0.1Q2). This range would grow as the viscosity ratio p 
grows. 

In figure 8, the stability diagrams related to the cases in figure 7 (in particular, 
k = 2) are plotted on (p,h)-planes. In all cases, the purely viscous branch that passes 
(0.5,l) is unaltered. Figure 8(a) shows the neutral stability curves for M = 0.1Q2. 
If we follow a horizontal line ,u = 2, we recover the case M = 0.1Q2 in figure 7(a). 
The branch p = 1 that exists in the purely viscous instability is here replaced by the 
curve that crosses the purely viscous branch that passes (0.5,l). There is a substantial 
increase in the unstable and stable regions that correspond to those for p < 1 in 
purely viscous instability (see figure 4). Therefore, even though the thinner layer is 
more viscous, the interface can stay stable, with appropriate heating or cooling of the 
channel walls. The new branch in the upper left corner is related to the M insufficient 
to change the viscous instability, discussed in figure 7(c). In figure 8(b), the heating 
is increased to M = 0.2Q2. Both the destabilized and stabilized regions due to the 
thermocapillarity have expanded. Consequently, the stable region in the upper left 
corner has shrunk, and the peak near the upper right corner, which measures the 
penetration of the thermocapillary stabilization, has increased. The case M = 0.2Q2 
in figure 7(a) shows this stabilization effect for h near unity. If the thermocapillary 
effect is increased further, there is a complete stabilization (destabilization) of the 
unstable (stable) region of the purely viscous instability for viscosity ratios smaller 
than a critical value, as shown in figure 8(c). This critical value of p increases 
with M .  The instability due to viscosity stratification thus can be controlled by the 
thermocapillarity. 
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FIGURE 7. Linear growth rates in the presence of viscosity stratification and thermocapillarity. 
(a) p = 2 and k = 2; ( b )  p = 2 and k = 1/2; (c) p = 4 and k = 2. 

5.7. Thermocapillary instability with elasticity stratijication 
The coupled instabilities due to the elasticity stratification and the thermocapillarity 
can be studied by superposing (93) with (97): 

J1 = h2(h - 1)2(2h - 1) (Dd2) - De(')) Q2(2h - 1)2 - M 1 .  (103) 2 [h(k - 1) + 112 

The elastic instability can be controlled by the thermocapillarity. Figure 9 provides 
the critical values of M for this stability control to be effective. The neutral branch 
for the purely elastic instability is the vertical line h = 0.5, to the right side of which 
the flow is elastically unstable. A few thermocapillary branches are plotted in the 
diagram, each corresponding to different values of the thermal conductivity ratio k .  If 
k = 1 the thermocapillarity is inactive, so that the branch coincides with h = 0.5. As k 
deviates from unity, the thermocapillary branch widens, resulting in the expansion of 
new stable and unstable regions due to the thermocapillarity. From the first (second) 
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FIGURE 8. Instability due to viscosity stratification and thermocapillarity when k = 2. 
(a)  M = 0.1Q2; (b)  M = 0.2Q2; (c) M = 0.3Q2. 

quadrant of the diagram we can deduce that if the fluid in contact with the heated 
wall has the higher thermal conductivity and elasticity and smaller (larger) thickness, 
the thermocapillarity stabilizes (destabilizes) the interface. The amount of heating 
required decreases with the increase of k .  As k + co the thermocapillary term in 
the above equation behaves as M / ( 2 h 2 ) ,  so that a complete destabilization will occur 
near h = 0, whereas a complete stabilization will not occur near h = 1. If the fluid in 
contact with the temperature-controlled side has smaller thermal conductivity (third 
and fourth quadrant), M/ (De(*) - De(')) has to be negative for the thermocapillary 
stablization and destabilization to occur. Therefore, the fluid with the lower elasticity 
must be in contact with the wall with the higher temperature. 

5.8. Thermocapillary instability with viscosity stratijication and elasticity 
In order to examine the effect of thermocapillarity on viscoelastic fluids with viscosity 
stratification, the full equation (80) should be considered. In the absence of density 
stratification, each term has a common factor (h2p - h2 + 2h - l), which corresponds 
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FIGURE 9. Instability due to elasticity and thermocapillarity when p = 1. 

to the neutral branch of the purely viscous instability. This branch thus is not affected 
by elasticity or thermocapillarity. Other branches, on the other hand, are influenced 
by the interaction of elasticity, stratification of elasticity, and thermocapillarity. 

Figure 10 shows stability diagrams in (p,  h)-planes when there is no elasticity 
stratification (De(')  = De(') = O.l), wall 2 is heated ( M  > 0), and fluid 2 has higher 
thermal conductivity (k = 2). Except for the thermocapillarity, the cases are identical 
to that in figure 5(b).  In figure 10(a), we set M = 0.1Q2. Since M(k - 1) > 0, 
the thermocapillarity by itself is stabilizing if h > 1/2 and destabilizing if h < 1/2. 
Consequently, compared to the isothermal case in figure 5(b),  the stable (unstable) 
region to the right (left) of the viscous neutral branch has expanded. The branch p = 1 
that exists in the isothermal case has disappeared. If we enhance the thermocapillary 
effect, the expansion of these stable and unstable regions develop further, as shown 
in figure 10(b) for M = Q2. 

In figure 11, the stability diagrams are shown for cases where the elasticity stratifica- 
tion (De(') # De(2)) is also present and M = Q2. In figure ll(a), the fluid in the heated 
side is more elastic (De(') = 0.1Q2 and De(2) = 0.2Q2). The isothermal counterpart is 
shown in figure 6(a). Two unstable regions to the left of the viscous neutral branch 
have merged together, and a new unstable region has been created at the lower left 
corner of the diagram. The opposite case of the elasticity stratification (De(') = 0.2Q2 
and De(2) = 0.1Q2) is shown in figure ll(b). Compared to the isothermal case in 
figure 6(b), the stable region in the lower left corner has completely disappeared, 
whereas the unstable region in the lower right corner persists. The viscosity ratio 
p for the instability to set in to the right of the viscous neutral branch has been 
increased. 
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FIGURE 10. Instability due to elasticity and thermocapillarity when k = 2 and De(') = De@) = 0.1. 
(a)  M = O.lQZ; (b)  M = QZ. 
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FIGURE 11. Instability due to thermocapillarity and stratifications in viscosity and elasticity when 
k = 1 and M = QZ. (a) Dd') = 0.1 and D d 2 )  = 0.1; ( b )  Dd' )  = 0.1 and De@) = 0.1. 

6. Concluding remarks 
An evolution equation is derived that predicts the motion of the interface between 

two thin viscoelastic fluids with shear thining, thermal thinning, and thermocapillarity. 
For thin layers, the present approach provides reasonable grounds for studying 
the linear stability and subsequent nonlinear flow developments of the interface 
encountered in many engineering applications. The equation models the effects of 
shear and thermal thinning, which modify the propagation of the interface waves, 
and elasticity, thermocapillarity, and the stratification of fluid density, viscosity, and 
elasticity, which affect the stability of the interface. 

The linear stability analysis performed via the evolution equation reveals the com- 
peting effects of viscosity stratification, elasticity, and thermocapillarity. The instability 
due to the viscosity stratification that exists whenever the more viscous layer is suf- 
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ficiently thinner and the instability due to the elasticity or the elasticity stratification 
can be controlled by the thermocapillarity. The stability analysis presented in this 
study can be used to determine the appropriate temperatures to be imposed on the 
channel walls. All the fluid properties introduced in the analysis, the imposed flow 
rate, and the desired thickness ratio affect these conditions. 

While the linear-stability analysis is useful in obtaining the global picture of the 
flow conditions for stability or instability, it is important to understand the nonlinear 
developments of the interface waves beyond the initial linear instability. The evolution 
equation renders an efficient alternative to the direct numerical simulation of the 
full coupled system. A dynamical-system analysis and spectral computations are 
performed through the evolution equation, and the results will be reported in Part 2 
of the study. 

Appendix. 
The coefficients for the leading-order velocity profiles, (50)-(51), are given as follows. 

ai‘) : {((gh5 - 4gh4 + 5gh3 - 2gh2)p  - gh5 + 4gh4 - 6gh3 + 4gh2 - gh)p  

+ (6h2p2 + (-6h2 + 6 ) ~ ) 4 4  + (-gh5 + 4gh4 - 5gh3 + 2gh2)p + gh5 
- 4gh4 + 6gh3 - 4gh2 + gh} / (h4p2  + (-2h4 + 4h3 - 6h2 + 4h)p + h4 
- 4h3 + 6h2 - 4h  + l } .  

a!) : {((gh4 - 6gh3 + 9gh2 - 4gh)p  - gh4 + 4gh3 - 6gh2 + 4gh - g)p  
+ (12hp2 + (-12h + 12)p)qq + (-gh4 + 6gh3 - 9gh2 + 4gh)p + gh4 
- 4gh3 + 6gh2 - 4gh + g } / { 2 h 4 p 2  + (-4h4 + 8h3 - 12h2 + 8 h ) p  + 2h4 
- 8h3 + 12h2 - 8h + 2). 

uy )  : {((gh5 - gh4)p - gh5 + gh4 + gh3 - gh2)p + ((6h2 - 12h)p - 6h2 + 12h - 6)qq 
+ (-gh5 + gh4)p  + gh5 - gh4 - gh3 + gh2} / {h4p2  + (-2h4 + 4h3 - 6h2 + 4h)p 
+ h4 - 4h3 + 6h2 - 4h + I } .  

up) : - { (gh4p  - gh4 - 2gh3 + 3gh2)p + (12hp - 12h + 12)qq - gh4p + gh4 + 2gh3 
- 3gh2)/{2h4p2 + (-4h4 + 8h3 - 12h2 + 8h)p + 2h4 - 8h3 + 12h2 - 8h + 2) .  
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